Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
2.
Exp Brain Res ; 242(5): 1161-1174, 2024 May.
Article En | MEDLINE | ID: mdl-38489024

Mental Time Travel (MTT) allows us to remember past events and imagine future ones. According to previous literature, the Temporal Distance of events affects MTT: our ability to order events worsens for close, compared to far, events. However, those studies established distances a-priori, albeit the way we perceive events' temporal distance may subjectively differ from their objective distance. Thus, in the current study, we aimed to investigate the effects of Perceived Temporal Distance (PTD) on the MTT ability and the brain areas mediating this process. Thirty-three healthy volunteers took part in an fMRI MTT task. Participants were asked to project themselves into the past, present, or future, and to judge a series of events as relative-past or relative-future, in relation to the adopted time location. Outside the scanner, participants provided PTD estimates for each stimulus of the MTT task. Participants' performance and functional activity were analyzed as a function of these estimations. At the behavioural level, PTD predicts the modulation of the performance for relative-past and relative-future. Bilateral angular gyrus, retrosplenial cortex, temporo-parietal region and medial, middle and superior frontal gyri mediate the PTD effect. In addition to these areas, the closer the relative-future events are perceived, the higher the involvement of left parahippocampal and lingual gyri and right cerebellum. Thus, perceived proximity of events activates frontal and posterior parietal areas, which therefore might mediate the processing of PTD in the cognitive spatial representation of time. Future proximity also activates cerebellum and medial temporal areas, known to be involved in imaginative and constructive cognitive functions.


Brain Mapping , Brain , Imagination , Magnetic Resonance Imaging , Time Perception , Humans , Male , Female , Adult , Time Perception/physiology , Young Adult , Brain/physiology , Brain/diagnostic imaging , Imagination/physiology
3.
Sleep Med ; 113: 357-369, 2024 01.
Article En | MEDLINE | ID: mdl-38113618

INTRODUCTION: Studies using scalp EEG have shown that slow waves (0.5-4 Hz), the most prominent hallmark of NREM sleep, undergo relevant changes from childhood to adulthood, mirroring brain structural modifications and the acquisition of cognitive skills. Here we used simultaneous EEG-fMRI to investigate the cortical and subcortical correlates of slow waves in school-age children and determine their relative developmental changes. METHODS: We analyzed data from 14 school-age children with self-limited focal epilepsy of childhood who fell asleep during EEG-fMRI recordings. Brain regions associated with slow-wave occurrence were identified using a voxel-wise regression that also modelled interictal epileptic discharges and sleep spindles. At the group level, a mixed-effects linear model was used. The results were qualitatively compared with those obtained from 2 adolescents with epilepsy and 17 healthy adults. RESULTS: Slow waves were associated with hemodynamic-signal decreases in bilateral somatomotor areas. Such changes extended more posteriorly relative to those in adults. Moreover, the involvement of areas belonging to the default mode network changes as a function of age. No significant hemodynamic responses were observed in subcortical structures. However, we identified a significant correlation between age and thalamic hemodynamic changes. CONCLUSIONS: Present findings indicate that the somatomotor cortex may have a key role in slow-wave expression throughout the lifespan. At the same time, they are consistent with a posterior-to-anterior shift in slow-wave distribution mirroring brain maturational changes. Finally, our results suggest that slow-wave changes may not reflect only neocortical modifications but also the maturation of subcortical structures, including the thalamus.


Epilepsy , Magnetic Resonance Imaging , Adult , Child , Adolescent , Humans , Young Adult , Magnetic Resonance Imaging/methods , Sleep/physiology , Electroencephalography/methods , Thalamus , Brain
4.
Neuropsychology ; 38(3): 268-280, 2024 Mar.
Article En | MEDLINE | ID: mdl-38127515

OBJECTIVES: The ability to mental time travel (MTT) consists in moving along a cognitive and spatially oriented representation of time, that is, an ideal mental time line, where past and future events are, respectively, located on the left and on the right portion of such a line. A shift of spatial attention by prismatic adaptation (PA) influences this spatial coding of time, thus affecting MTT. Here, we investigated the neural correlates of such a spatial modulation on MTT in a functional Magnetic Resonance Imaging protocol. METHOD: To study MTT ability, participants were asked to indicate if a series of events took place before or after (Self-Reference component) an imagined self-location in time (Past, Present or Future; Self-Projection component), where they had to project themselves. The MTT task was performed before and after PA inducing a leftward shift of spatial attention, which is supposed to move toward the left portion of mental time line (MTL), where Past is represented. RESULTS: Following PA, we observed a facilitation in responding to past as compared to future events when participants projected themselves to the Past projection. As a functional counterpart of this behavioral finding, we propose a model of the brain activity modulations following the PA effects on MTT. CONCLUSIONS: As a result of the shift of spatial attention toward the left, the facilitation in having access to past events is associated with the inhibition of superior frontal gyrus in the left hemisphere, whereas the facilitation in projecting toward the Past may result from the activity modulation in right and left inferior parietal lobule. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Space Perception , Time Perception , Humans , Space Perception/physiology , Time Perception/physiology , Attention/physiology , Parietal Lobe/physiology , Prefrontal Cortex , Magnetic Resonance Imaging , Functional Laterality/physiology , Brain/diagnostic imaging
5.
Front Neurosci ; 17: 1234286, 2023.
Article En | MEDLINE | ID: mdl-37829724

Introduction: Recent studies have shown that processing semantic pain, such as words associated with physical pain, modulates pain perception and enhances activity in regions of the pain matrix. A direct comparison between activations due to noxious stimulation and processing of words conveying physical pain may clarify whether and to what extent the neural substrates of nociceptive pain are shared by semantic pain. Pain is triggered also by experiences of social exclusion, rejection or loss of significant others (the so-called social pain), therefore words expressing social pain may modulate pain perception similarly to what happens with words associated with physical pain. This event-related fMRI study aims to compare the brain activity related to perceiving nociceptive pain and that emerging from processing semantic pain, i.e., words related to either physical or social pain, in order to identify common and distinct neural substrates. Methods: Thirty-four healthy women underwent two fMRI sessions each. In the Semantic session, participants were presented with positive words, negative pain-unrelated words, physical pain-related words, and social pain-related words. In the Nociceptive session, participants received cutaneous mechanical stimulations that could be either painful or not. During both sessions, participants were asked to rate the unpleasantness of each stimulus. Linguistic stimuli were also rated in terms of valence, arousal, pain relatedness, and pain intensity, immediately after the Semantic session. Results: In the Nociceptive session, the 'nociceptive stimuli' vs. 'non-nociceptive stimuli' contrast revealed extensive activations in SI, SII, insula, cingulate cortex, thalamus, and dorsolateral prefrontal cortex. In the Semantic session, words associated with social pain, compared to negative pain-unrelated words, showed increased activity in most of the same areas, whereas words associated with physical pain, compared to negative pain-unrelated words, only activated the left supramarginal gyrus and partly the postcentral gyrus. Discussion: Our results confirm that semantic pain partly shares the neural substrates of nociceptive pain. Specifically, social pain-related words activate a wide network of regions, mostly overlapping with those pertaining to the affective-motivational aspects of nociception, whereas physical pain-related words overlap with a small cluster including regions related to the sensory-discriminative aspects of nociception. However, most regions of overlap are differentially activated in different conditions.

6.
Brain Sci ; 13(4)2023 Apr 16.
Article En | MEDLINE | ID: mdl-37190633

Facial imitation occurs automatically during the perception of an emotional facial expression, and preventing it may interfere with the accuracy of emotion recognition. In the present fMRI study, we evaluated the effect of posing a facial expression on the recognition of ambiguous facial expressions. Since facial activity is affected by various factors, such as empathic aptitudes, the Interpersonal Reactivity Index (IRI) questionnaire was administered and scores were correlated with brain activity. Twenty-six healthy female subjects took part in the experiment. The volunteers were asked to pose a facial expression (happy, disgusted, neutral), then to watch an ambiguous emotional face, finally to indicate whether the emotion perceived was happiness or disgust. As stimuli, blends of happy and disgusted faces were used. Behavioral results showed that posing an emotional face increased the percentage of congruence with the perceived emotion. When participants posed a facial expression and perceived a non-congruent emotion, a neural network comprising bilateral anterior insula was activated. Brain activity was also correlated with empathic traits, particularly with empathic concern, fantasy and personal distress. Our findings support the idea that facial mimicry plays a crucial role in identifying emotions, and that empathic emotional abilities can modulate the brain circuits involved in this process.

7.
Inflamm Bowel Dis ; 29(8): 1297-1305, 2023 08 01.
Article En | MEDLINE | ID: mdl-36897213

BACKGROUND: Crohn's disease (CD) is an inflammatory, chronic disorder that alternates between a quiescent phase and inflammatory flare-ups. Research has begun to elucidate the impact of CD in modulating brain structure and function. The previous neuroimaging studies mainly involved CD patients in remission (CD-R); therefore, little is known about how inflammation influences brain-related features in different stages of the disease. We carried out a magnetic resonance imaging (MRI) study to explore whether the different levels of disease activity may differentially affect brain structure and function. METHODS: Fourteen CD-R patients, 19 patients with mild to moderate inflammatory activity (CD-A), and 18 healthy controls (HCs) underwent an MRI scan including structural and functional sequences. RESULTS: Between-group comparisons showed morphological and functional brain differences distinctively associated with the stage of disease activity. The CD-A patients had reduced gray matter within the posterior cingulate cortex (PCC) relative to CD-R patients. Analysis on resting fMRI data showed the following patterns: (1) increased connectivity within the left fronto-parietal network (in the superior parietal lobe) in CD-R patients relative to CD-A patients; (2) decreased connectivity in the motor network (in parietal and motor areas) in the CD-A group relative to the HC group; (3) reduced connectivity in the motor network and (4) in the language network (in parietal areas and in the PCC) in CD-R patients relative to HC. CONCLUSIONS: The present findings represent a further step towards understanding brain morphological and functional changes in the active vs remission stages of CD patients.


We found morphological and functional brain changes associated with different stages of disease activity in Crohn's disease. These findings may represent the neural correlates of fatigue, irritable bowel syndrome­like symptoms, and cognitive-emotional impairments; these could be useful for evaluating disease progression.


Crohn Disease , Humans , Crohn Disease/pathology , Neural Pathways , Brain , Magnetic Resonance Imaging
8.
Neurol Sci ; 43(9): 5275-5279, 2022 Sep.
Article En | MEDLINE | ID: mdl-35710959

BACKGROUND: Auditory agnosia refers to the impairments in sound recognition despite intact hearing and written language abilities. When auditory agnosia is specific to spoken language, it can be indicated as pure word deafness (PWD), which is characterized by the isolated difficulty in understanding spoken language, despite preserved reading comprehension, recognition of nonverbal sounds, and production of written and spoken language. CASE: A middle-aged man with a high level of education developed a progressive speech disorder initially characterized by isolated phonemic errors during spontaneous speech and later enriched by difficulties in comprehending long sentences. The patient's past medical history was unremarkable except for hypertension. The neuropsychological picture was suggestive of PWD, while cerebrospinal fluid (CSF) analyses lead to a biomarker-based diagnosis of Alzheimer's disease (AD). PWD remained the prevalent cognitive deficit over the subsequent 4 years. CONCLUSIONS: This case report shows that the presence of isolated auditory agnosia or PWD should prompt consideration of a diagnosis of AD. It also suggests that the spectrum of atypical presentations of early-onset AD may be larger than what we currently think.


Agnosia , Alzheimer Disease , Aphasia , Deafness , Speech Perception , Agnosia/diagnosis , Agnosia/etiology , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Aphasia/etiology , Deafness/complications , Deafness/diagnosis , Humans , Language , Male , Middle Aged , Speech Disorders/complications , Speech Perception/physiology
9.
Front Aging Neurosci ; 14: 816648, 2022.
Article En | MEDLINE | ID: mdl-35493936

Background: Recent models of anosognosia in dementia have suggested the existence of an implicit component of self-awareness about one's cognitive impairment that may remain preserved and continue to regulate behavioral, affective, and cognitive responses even in people who do not show an explicit awareness of their difficulties. Behavioral studies have used different strategies to demonstrate implicit awareness in patients with anosognosia, but no neuroimaging studies have yet investigated its neural bases. Methods: Patients with amnestic mild cognitive impairment and dementia due to Alzheimer's disease underwent functional magnetic resonance imaging (fMRI) during the execution of a color-naming task in which they were presented with neutral, negative, and dementia-related words (Dementia-Related Emotional Stroop). Results: Twenty-one patients were recruited: 12 were classified as aware and 9 as unaware according to anosognosia scales (based on clinical judgment and patient-caregiver discrepancy). Behavioral results showed that aware patients took the longest time to process dementia-related words, although differences between word types were not significant, limiting interpretation of behavioral results. Imaging results showed that patients with preserved explicit awareness had a small positive differential activation of the posterior cingulate cortex (PCC) for the dementia-related words condition compared to the negative words, suggesting attribution of emotional valence to both conditions. PCC differential activation was instead negative in unaware patients, i.e., lower for dementia-related words relative to negative-words. In addition, the more negative the differential activation, the lower was the Stroop effect measuring implicit awareness. Conclusion: Posterior cingulate cortex preserved response to dementia-related stimuli may be a marker of preserved implicit self-awareness.

10.
Brain Sci ; 12(5)2022 Apr 26.
Article En | MEDLINE | ID: mdl-35624941

In this paper, we describe the multimodal MRI findings in a patient with Wilson disease and a seizure disorder, characterized by an electroclinical picture resembling juvenile myoclonic epilepsy. The brain structural MRI showed a deposition of ferromagnetic materials in the basal ganglia, with marked hypointensities in T2-weighted images of globus pallidus internus bilaterally. A resting-state fMRI study revealed increased functional connectivity in the patient, compared to control subjects, in the following networks: (1) between the primary motor cortex and several cortical regions, including the secondary somatosensory cortex and (2) between the globus pallidus and the thalamo-frontal network. These findings suggest that globus pallidus alterations, due to metal accumulation, can lead to a reduction in the normal globus pallidus inhibitory tone on the thalamo-(motor)-cortical pathway. This, in turn, can result in hyperconnectivity in the motor cortex circuitry, leading to myoclonus and tonic-clonic seizures. We suppose that, in this patient, Wilson disease generated a 'lesion model' of myoclonic epilepsy.

11.
Front Psychol ; 12: 750597, 2021.
Article En | MEDLINE | ID: mdl-34880811

Disparagement humor is a kind of humor that denigrates, belittles an individual or a social group. In the aim to unveil the offensive side of these kinds of jokes, we have run an event-related fMRI study asking 30 healthy volunteers to judge the level of fun of a series of verbal stimuli that ended with a sentence that was socially inappropriate but funny (disparagement joke -DJ), socially inappropriate but not funny (SI) or neutral (N). Behavioral results showed disparagement jokes are perceived as funny and at the same time offensive. However, the level of offense in DJ is lower than that registered in SI stimuli. Functional data showed that DJ activated the insula, the SMA, the precuneus, the ACC, the dorsal striatum (the caudate nucleus), and the thalamus. These activations suggest that in DJ a feeling of mirth (and/or a desire to laugh) derived from the joke (e.g., SMA and precuneus) and the perception of the jokes' social inappropriateness (e.g., ACC and insula) coexist. Furthermore, DJ and SI share a common network related to mentalizing and to the processing of negative feelings, namely the medial prefrontal cortex, the putamen and the right thalamus.

12.
Neuroimage Clin ; 31: 102748, 2021.
Article En | MEDLINE | ID: mdl-34252875

INTRODUCTION: functional and structural MRI studies suggest that the orexin (hypocretin) deficiency in the dorso-lateral hypothalamus of narcoleptic patients would influence both brain metabolism and perfusion and would cause reduction in cortical grey matter. Previous fMRI studies have mainly focused on cerebral functioning during emotional processing. The aim of the present study was to explore the hemodynamic behaviour of spontaneous BOLD fluctuation at rest in patients with Narcolepsy type 1 (NT1) close to disease onset. METHODS: Fifteen drug naïve children/adolescents with NT1 (9 males; mean age 11.7 ± 3 years) and fifteen healthy children/adolescents (9 males; mean age 12.4 ± 2.8 years) participated in an EEG-fMRI study in order to investigate the resting-state functional connectivity of hypothalamus and amygdala. Functional images were acquired on a 3 T system. Seed-based functional connectivity analyses were performed using SPM12. Regions of Interest were the lateral hypothalamus and the amygdala. RESULTS: compared to controls, NT1 patients showed decreased functional connectivity between the lateral hypothalamus and the left superior parietal lobule, the hippocampus and the parahippocampal gyrus. Decreased functional connectivity was detected between the amygdala and the post-central gyrus and several occipital regions, whereas it was increased between the amygdala and the inferior frontal gyrus, claustrum, insula, and putamen. CONCLUSION: in NT1 patients the abnormal connectivity between the hypothalamus and brain regions involved in memory consolidation during sleep, such as the hippocampus, may be linked to the loss of orexin containing neurons in the dorsolateral hypothalamus. Moreover, also functional connectivity of the amygdala seems to be influenced by the loss of orexin-containing neurons. Therefore, we can hypothesize that dysfunctional interactions between regions subserving the maintenance of arousal, memory and emotional processing may contribute to the main symptom of narcolepsy.


Brain Mapping , Narcolepsy , Adolescent , Amygdala/diagnostic imaging , Child , Humans , Hypothalamus , Magnetic Resonance Imaging , Male , Narcolepsy/diagnostic imaging
13.
Neuroimage ; 236: 118117, 2021 08 01.
Article En | MEDLINE | ID: mdl-33940148

EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.


Brain Stem/physiology , Brain Waves/physiology , Cerebellum/physiology , Neurovascular Coupling/physiology , Sensorimotor Cortex/physiology , Sleep, Slow-Wave/physiology , Thalamus/physiology , Adult , Brain Stem/diagnostic imaging , Cerebellum/diagnostic imaging , Electroencephalography , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Sensorimotor Cortex/diagnostic imaging , Thalamus/diagnostic imaging
14.
Soc Neurosci ; 14(3): 359-377, 2019 06.
Article En | MEDLINE | ID: mdl-29683406

The circumstances under which empathy is altered in ASD remain unclear, as previous studies did not systematically find differences in brain activation between ASD and controls in empathy-eliciting paradigms, and did not always monitor whether differences were primarily due to ASD "per se", or to conditions overlapping with ASD, such as alexithymia and anxiety. Here, we collected fMRI data from 47 participants (22 ASD) viewing pictures depicting hands and feet of unknown others in painful, disgusting, or neutral situations. We computed brain activity for painful and disgusting stimuli (vs. neutral) in whole brain and in regions of interest among the brain areas typically activated during the perception of nociceptive stimuli. Group differences in brain activation disappeared when either alexithymia or anxiety - both elevated in the ASD group - were controlled for. Regression analyses indicated that the influence of symptoms was mainly shared between autistic symptomatology, alexithymia and anxiety or driven by unique contributions from alexithymia or anxiety. Our results suggest that affective empathy may be affected in ASD, but that this association is complex. The respective contribution of alexithymia and anxiety to decreased affective empathy of people with ASD may be due to the association of those psychiatric conditions with reduced motor resonance/Theory of Mind.


Affective Symptoms/physiopathology , Affective Symptoms/psychology , Anxiety/physiopathology , Anxiety/psychology , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Brain/physiopathology , Empathy/physiology , Pain/psychology , Adolescent , Brain Mapping , Disgust , Female , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Theory of Mind , Young Adult
15.
Front Behav Neurosci ; 12: 212, 2018.
Article En | MEDLINE | ID: mdl-30279649

"Autobiographical memory" (AM) refers to remote memories from one's own life. Previous neuroimaging studies have highlighted that voluntary retrieval processes from AM involve different forms of memory and cognitive functions. Thus, a complex and widespread brain functional network has been found to support AM. The present functional magnetic resonance imaging (fMRI) study used a multivariate approach to determine whether neural activity within the AM circuit would recognize memories of real autobiographical events, and to evaluate individual differences in the recruitment of this network. Fourteen right-handed females took part in the study. During scanning, subjects were presented with sentences representing a detail of a highly emotional real event (positive or negative) and were asked to indicate whether the sentence described something that had or had not really happened to them. Group analysis showed a set of cortical areas able to discriminate the truthfulness of the recalled events: medial prefrontal cortex, posterior cingulate/retrosplenial cortex, precuneus, bilateral angular, superior frontal gyri, and early visual cortical areas. Single-subject results showed that the decoding occurred at different time points. No differences were found between recalling a positive or a negative event. Our results show that the entire AM network is engaged in monitoring the veracity of AMs. This process is not affected by the emotional valence of the experience but rather by individual differences in cognitive strategies used to retrieve AMs.

16.
Front Psychol ; 9: 1825, 2018.
Article En | MEDLINE | ID: mdl-30333771

Facial expressions of pain are able to elicit empathy and adaptive behavioral responses in the observer. An influential theory posits that empathy relies on an affective mirror mechanism, according to which emotion recognition relies upon the internal simulation of motor and interoceptive states triggered by emotional stimuli. We tested this hypothesis comparing representations of self or others' expressions of pain in nineteen young healthy female volunteers by means of functional magnetic resonance imaging (fMRI). We hypothesized that one's own facial expressions are more likely to elicit the internal simulation of emotions, being more strictly related to self. Video-clips of the facial expressions of each volunteer receiving either painful or non-painful mechanical stimulations to their right hand dorsum were recorded and used as stimuli in a 2 × 2 (Self/Other; Pain/No-Pain) within-subject design. During each trial, a 2 s video clip was presented, displaying either the subject's own neutral or painful facial expressions (Self No-Pain, SNP; Self Pain, SP), or the expressions of other unfamiliar volunteers (Others' No-Pain, ONP; Others' Pain, OP), displaying a comparable emotional intensity. Participants were asked to indicate whether each video displayed a pain expression. fMRI signals were higher while viewing Pain than No-Pain stimuli in a large bilateral array of cortical areas including middle and superior temporal, supramarginal, superior mesial and inferior frontal (IFG) gyri, anterior insula (AI), anterior cingulate (ACC), and anterior mid-cingulate (aMCC) cortex, as well as right fusiform gyrus. Bilateral activations were also detected in thalamus and basal ganglia. The Self vs. Other contrast showed signal changes in ACC and aMCC, IFG, AI, and parietal cortex. A significant interaction between Self and Pain [(SP vs. SNP) >(OP vs. ONP)] was found in a pre-defined region of aMCC known to be also active during noxious stimulation. These findings demonstrate that the observation of one's own and others' facial expressions share a largely common neural network, but self-related stimuli induce generally higher activations. In line with our hypothesis, selectively greater activity for self pain-related stimuli was found in aMCC, a medial-wall region critical for pain perception and recognition.

17.
Eur J Neurosci ; 48(6): 2333-2342, 2018 09.
Article En | MEDLINE | ID: mdl-30168869

The extent to which affective empathy is impaired in Autism Spectrum Disorder (ASD) remains unclear, as some-but not all-previous neuroimaging studies investigating empathy for pain in ASD have shown similar activation levels to those of neurotypicals individuals. These inconsistent results could be due to the use of different empathy-eliciting stimuli. While some studies used pictures of faces exhibiting a painful expression, others used pictures of limbs in painful situations. In this study, we used fMRI to compare activation in areas associated with empathy processing (empathy network) for these two types of stimuli in 31 participants (16 with ASD, 15 controls). We found a group difference in the inferior frontal gyrus (IFG) and the thalamus when participants viewed stimuli of limbs in painful situations, but not when they viewed face stimuli with a painful expression. Both groups of participants activated their empathy network more when viewing pictures of limbs in painful situations than when viewing pictures of faces with a painful expression; this increased activation for limbs versus faces was significantly enhanced in controls relative to ASD participants, especially in the secondary somatosensory cortex (SII). Our findings suggest that empathy defect of people with ASD is contingent upon the type of stimuli used, and may be related to the level of Mirror Neuron System involvement, as brain regions showing group differences (IFG, SII) underlie embodiment. We discuss the potential clinical implications of our findings in terms of developing interventions boosting the empathetic abilities of people with ASD.


Autism Spectrum Disorder/physiopathology , Brain/physiopathology , Empathy/physiology , Pain/physiopathology , Photic Stimulation , Adolescent , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Neuropsychological Tests , Somatosensory Cortex/physiology , Young Adult
18.
PLoS One ; 13(2): e0193100, 2018.
Article En | MEDLINE | ID: mdl-29447256

According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.


Brain/physiopathology , Facial Expression , Nerve Net/physiopathology , Pain/physiopathology , Time Perception/physiology , Adult , Attention/physiology , Brain/diagnostic imaging , Brain Mapping , Emotions/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Pain/diagnostic imaging , Sex Factors , Young Adult
19.
Neuropsychologia ; 110: 92-103, 2018 02.
Article En | MEDLINE | ID: mdl-28801245

We investigated episodic future thinking (EFT) and future-based cognition and decision-making in patient SG, who developed a dense retrograde amnesia following hypoxia due to a cardiac arrest. Despite intact general cognitive and executive functioning, SG was unable to remember events from his entire lifetime. He had, however, relatively spared anterograde memory and general semantic knowledge. Voxel-based morphometry detected a reduction of gray matter in the thalamus, cerebellum and fusiform gyrus bilaterally, and, at a reduced threshold, in several regions of the autobiographical memory network, including the hippocampi. We show that SG is unable to imagine personal future events, but can imagine fictitious events not self-relevant and not located in subjective time. Despite severely impaired EFT, SG shows normal attitudes towards the future time, and normal delay discounting rates. These findings suggest that retrieval of autobiographical information from long-term memory is necessary for EFT. However, relatively spared anterograde memory and general semantic knowledge may be sufficient to allow construction of fictitious experiences. As well, EFT is not necessary to drive future-oriented cognition and choice. These findings highlight the relation between autobiographical memory and EFT, and the fractionation of human temporal consciousness. Moreover, they contribute to our understanding of retrograde amnesia as an impairment of memory as well as future thinking.


Amnesia, Retrograde/psychology , Decision Making , Memory, Episodic , Thinking , Amnesia, Retrograde/diagnostic imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Imagination , Male , Middle Aged , Semantics
20.
Drug Des Devel Ther ; 11: 593-598, 2017.
Article En | MEDLINE | ID: mdl-28424537

INTRODUCTION: Awake craniotomy allows continuous monitoring of patients' neurological functions during open surgery. Anesthesiologists have to sedate patients in a way so that they are compliant throughout the whole surgical procedure, nevertheless maintaining adequate analgesia and anxiolysis. Currently, the use of α2-receptor agonist dexmedetomidine as the primary hypnotic-sedative medication is increasing. METHODS: Nine patients undergoing awake craniotomy were treated with refined monitored anesthesia care (MAC) protocol consisting of a combination of local anesthesia without scalp block, low-dose infusion of dexmedetomidine, propofol, and remifentanil, without the need of airways management. RESULTS: The anesthetic protocol applied in our study has the advantage of decreasing the dose of each drug and thus reducing the occurrence of side effects. All patients had smooth and rapid awakenings. The brain remained relaxed during the entire procedure. CONCLUSION: In our experience, this protocol is safe and effective during awake brain surgery. Nevertheless, prospective randomized trials are necessary to confirm the optimal anesthetic technique to be used.


Anesthetics, Local/pharmacology , Brain Neoplasms/drug therapy , Craniotomy , Dexmedetomidine/pharmacology , Glioma/drug therapy , Piperidines/pharmacology , Propofol/pharmacology , Adult , Anesthesia, Local , Anesthetics, Local/administration & dosage , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Dexmedetomidine/administration & dosage , Female , Glioma/pathology , Glioma/surgery , Humans , Male , Middle Aged , Piperidines/administration & dosage , Propofol/administration & dosage , Remifentanil , Retrospective Studies , Wakefulness
...